Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process

نویسندگان

  • Itaru Yanagi
  • Takeshi Ishida
  • Koji Fujisaki
  • Ken-ichi Takeda
چکیده

To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and sm...

متن کامل

Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis

Nanometer-sized pores can be used to detect and characterize biopolymers, such as DNA, RNA, and polypeptides, with single-molecule resolution. Experiments performed with the 1.5 nm pore a-hemolysin (a-HL) demonstrated that singlestranded DNA and RNA molecules can be electrophoretically threaded through a pore, and that the ion current flowing through the pore contains information about the biop...

متن کامل

Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection

To date, solid-state nanopores have been fabricated primarily through a focused-electronic beam via TEM. For mass production, however, a TEM beam is not suitable and an alternative fabrication method is required. Recently, a simple method for fabricating solid-state nanopores was reported by Kwok, H. et al. and used to fabricate a nanopore (down to 2 nm in size) in a membrane via dielectric bre...

متن کامل

Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope

Solid-state nanopores can be used to detect nucleic acid structures at the single molecule level. An e-beam has been used to fabricate nanopores in silicon nitride and silicon dioxide membranes, but the pore formation kinetics, and hence its final structure, remain poorly understood. With the aid of high-resolution TEM imaging as well as TEM tomography we examine the effect of Si3N4 material pr...

متن کامل

Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores.

In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015